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compounds raise the question of whether the Zr6X 12 unit can (or 
ever does) exist empty. 

We do not think it likely that there is any atom occupying the 
Zr6 cage in Zr6Cl12(PMe2Ph)6. The presence of C, N, or any 
heavier atom could scarcely escape our notice. The presence of 
Be or B seems unplausible for chemical reasons alone. Only H 
(or H2) might be chemically possible and crystallographically 
acceptable. 

The Zr6Cl12(PMe2Ph)6 molecule has a mean Zr-Zr distance 
of 3.223 (3) A, and there are 12 electrons for Zr6 cluster bonding. 
In the occupied cages mentioned above, there are generally 14 
electrons and Zr-Zr distances of ca. 3.21 A. The addition of two 
electrons would increase the Zr-Zr bond order only from 0.50 
to 0.58 which does not seem inconsistent with the slight change 
in Zr-Zr distance. 
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Despite the inherent investigational advantage that both non-
classical 1 and classical 2 forms possess Cs symmetry, the 2-bi-
cyclo[2.1.1]hexyl cation1 has received only a fraction of the at­
tention1"3 afforded its infamous homolog, the 2-norbornyl cation, 
34 (4 is a hypothetical species).5 Nevertheless, data pertinent 
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Figure 1. MP2(FULL)/6-31G* geometries of the bridged 1 (top) and 
classical 2 (botton) 2-bicyclo[2.1.1]hexyl cations. For bicyclo[2.1.1]-
hexane 5 at the same level, KC1C2) = 1.533, KC1C6) = 1.546, and 
KC2C3) = 1.557 A. 

to the structure (1 vs 2) of the bicyclohexyl cation are rather 
extensive, but there has been disagreement regarding the in-
tepretation.1-3,6-12 The problem is not a simple one. As all three 
methylene groups are equivalent on the NMR time scale at -110°, 
and no CMR line broadening is observed, the energy difference 
between 1 and 2 must be 3 kcal/mol or less.6,7,9 The isotopic 
perturbation method clearly indicates that the stable ion has the 
bridged structure.9 Kirmse's impressive recent double labeling 
experiments indicated that 1 should be about 3 kcal/mol more 
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Table I. Comparison of Experimental and Calculated (IGLO)" 
NMR Chemical Shifts, ppm (vs TMS) 
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1, 2 av 
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3, 5, 6 av 
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+ / 

B / 
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81.6 
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e 
e 
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A J£ 
4 \ CH ^ v \ CH3 

classical 

calcd, 
6 R = H" 2 

80.6 
334.2^ 
207.4^ 
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60.8 
60.8 
59.6 
30.4 

-h H 
CH3 

expt/ 
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e 
e 

199.5 
e 
e 
e 

60.6 
34.6 

\ / 
* / 
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bridged 

expt* 
1 

e 
e 

157.8 
e 
e 
e 

49.1 
43.4 

calcd" 
1 

158.5 
158.5 
158.5 

36.1 
36.1 
64.8 
45.7 
37.5 

0IGLO method, DZ basis set on the MP2/6-31G* geometries (see 
ref 18). * Reference 7. 'Reference 10. ''These values would be low­
ered by methyl substitution, as in the experimentally examined sys­
tems. 'Only average signals for these carbons are observed. 

stable than 2 in nucleophilic media.3 

Extensive calculational studies of carbocation potential energy 
surface have established the levels of theory needed for problems 
of this type.51314 Use of a CRAY XMP Computer and the 
GAUSSIAN 82 program14 permitted MP2FULL/6-31G* (FULL 
= all electrons correlated) optimizations of 1 and 2; 3-21G and 
6-3IG* optimizations were carried out as well. Frequency analysis 
at 6-3IG* showed both 1 and 2 to be minima (no imaginary 
frequencies). MINDO/3 gives the same result, with a barrier 
of only 0.3 kcal/mol.11 Whether or not this also is the case at 
the correlated levels (e.g., MP2) could not be established, but the 
potential energy surface between 1 and 2 evidently is quite flat. 

The MP2FULL/6-31G* geometries (Figure 1) were then em­
ployed for MP3FC/6-31G* single point computations (by using 
the frozen core approximation, FC) on 1 (-232.92392 au) and 
2 (-232.91673 au). As expected,513'14 the relative stability of the 
bridged ion is underestimated at HF/3-21G and at HF/6-31G*, 
but the correlated MP2 and MP3 levels give quite similar results 
and favor 1 over 2 by 5.2 and 4.5 kcal/mol, respectively. After 
correction for the zero-point energy differences, the bridged form 
1 is 4.0 kcal/mol more stable than the open isomer 2. Kirmse's 
recent estimate of about 3 kcal/mol3 is only slightly smaller, and 
Sorensen's results10 also are in line. Theoretical estimates of the 
stabilization energy of the 2-norbornyl cation due to bridging (3 
vs 4) are higher, in the 10-15 kcal/mol range, but are derived 
more arbitrarily.5" Stabilization energy estimates around 11 
kcal/mol are obtained from gas-phase data.16 

Experimental 13C chemical shifts now provide a sensitive 
structure probe, since these values now can be calculated reliably 
for different structural models (e.g., 1 and 2). The IGLO17 results 
(DZ//MP2FULL/6-31G*) on 1 and 2 are compared with the 
experimental 13C chemical shifts for the parent secondary 1 and 
two tertiary 2-methyl 6 and l,2-dimethylbicyclo[2.1.1]hexyl 7 
cations in Table I. As all three of the experimental systems are 
rapidly equilibrating at the temperatures investigated, only average 
signal positions of C(3), C(5), and C(6) are reported. C(I) and 
C(2) also either are identical (e.g., as in 1) or averaged (e.g., as 
in 2). IGLO clearly differentiates between these possibilities: For 
1, the experimental (157.8 ppm) and calculated (158.5 ppm) values 
are nearly identical but do not correspond to the IGLO chemical 
shift for 2 (207.4 ppm). However, the latter is in good agreement 

(13) Raghavachari, K.; Whiteside, R. A.; Pople, J. A.; Schleyer, P. v. R. 
J. Am. Chem. Soc. 1981, 103, 5649. 
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Molecular Orbital Theory; Wiley: 1986. 

(15) Wiberg, K. B.; Wendoloski, J. J. / . Am. Chem. Soc. 1982,104, 5679. 
(16) Lossing, F. P.; Holmes, J. L. J. Am. Chem. Soc. 1984, 106, 6917. 

Blanchette, M. C; Holmes, J. L.; Lossing, E. P. Ibid. 1987, 109, 1382 and 
references cited. 

(17) Schindler, M. J. Am. Chem. 1987, 109, 1020. 

with the C(l)-C(2) average 13C chemical shift found in 7. For 
6, both C(I) and C(2) can be observed; note the close agreement 
between theory and experiment shown in Table I (also for C(4) 
and for the C(3), C(5), and C(6) averages). 

Both on the basis of the calculated energies and the IGLO 
results, we conclude that the 2-bicyclo[2.1.1]hexyl cation prefers 
the symmetrically bridged 1 over the 2 structure. The energy 
difference, about 4 kcal/mol, appears to be lowered only slightly 
in solution (if at all), judging from Kirmse's 3 kcal/mol estimate3 

and that from the NMR line broadening experiments. This 
supports Kirmse's conclusion that "nucleophilic solvation does not 
appreciably effect the relative stabilities of bridged and open ions". 
The tertiary 2-methylbicyclo[2.1.1]hexyl cation 6 is classical and 
the 1,2-dimethyl analogue 7 equilibrates rapidly between two 

equivalent classical tertiary structures. These results calibrate 
and demonstrate the reliability of similar evidence5,16 indicating 
the 2-norbornyl cation to be a symmetrically bridged species with 
a single sharp energy minimum. 
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The design and synthesis of new fluorescent probe molecules 
have been essential aspects in the continuing development and 
app'ication of biophysical tracer methods.3 In this paper we 
describe the synthesis and photoactivation of a new type of probe 
molecule, the photoactivable fluorophore (PAF), designed for 
tracer studies of molecular transport and diffusion in biological 
systems. 

Photoactivable fluorophores are stable, nonfluorescent molecules 
with latent fluorescent characteristics that can be revealed by 
photoinduced processes.4'5 Photoactivable fluorophores attached 
to biological macromolecules or other species of interest may be 
converted to ultimate fluorophores within a confined spatial region 
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Chemical Society Meeting, Anaheim, CA, September 1986. Organic Abstract 
no. 264. 

(2) Parts 1 and 2 in this series are in press in Tetrahedron Lett, (a) 
Cummings, R. T.; Krafft, G. A. Tetrahedron Lett. 1987, 28, 0000. (b) 
Cummings, R. T.; DiZio, J. P.; Krafft, G. A. Tetrahedron Lett. 1987, 28, 
0000. 
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Press: New York, 1983. Applications of Fluorescence in the Biomedical 
Sciences; Taylor, D. L., Lanni, F., Murphy, R., Waggoner, A., Eds.; Alan R. 
Liss, Inc.: New York, 1986. 
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1981, 20, 4107-4118. Ueno, T.; Hikita, S.; Muno, D.; Sato, E.; Kanaoka, Y.; 
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